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Abstract. The multiple allocation uncapacitated hub location problem is considered. This
problem arises in transportation systems when several locations send and receive passengers
and/or express packages and the performance of these systems can be improved by using
transshipment points (hubs), where the passengers/packages are collected and distributed.

An Integer Programming formulation, the one giving the best computational results until
now, serves as a basis for the solution method. Using the fact that the transportation costs
between hubs satisfy the triangle inequality, an analysis of the set of solutions that are not
candidates to be optimal is carried out and, as a consequence, the formulation of the prob-
lem can be strengthened by means of powerful valid inequalities obtained through the study
of the intersection graph of an associated set packing problem. The algorithm developed
uses the most promising of these inequalities in a Lagrangian relaxation context to reduce
the size of the branching tree and improve the computational times. This improvement is
shown by means of a computational study, where a set of instances are optimally solved with
low computational effort.
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0. Introduction

Hub location problems arise in transportation systems when several loca-
tions send and receive passengers and/or express packages and the perfor-
mance of these systems can be improved by using transshipment points
(hubs), where the passengers/packages are collected and distributed.

Most of the papers in the literature devoted to the optimization of these
systems are based on the use of Integer Programming techniques (IP). The
papers cited in the following deal with two different versions of uncapacitat-
ed hub location; one of them corresponds with the problem studied in this
paper, and the other one with the so-called p-hub median problem. But all
of them are relevant in the development of new IP formulations for uncapac-
itated hub location. The first integer linear programming formulation for the
uncapacitated multiple allocation hub location problem (the one dealt with in
this paper) in the literature was given by Campbell (1994). Klincewicz (1996)
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used it to design a dual algorithm. Later, Skorin-Kapov et al. (1996) modified
this formulation, using fewer constraints and the same number of variables,
and O’Kelly et al. (1996) studied a second improvement which reduced still
more the number of variables. Recently, Hamacher et al. (2001) and Cánovas
et al. (2001) began to study the polyhedral structure of the problem. In Ernst
and Krishnamoorthy (1998a, b), formulations based on a different approach
were given.

In this paper, one of the known formulations of the problem will be
improved, making use of the assumption that the transportation costs
between hubs satisfy the triangle inequality, and a study of the structure
of the associated polyhedron – the convex hull of the feasible solutions –
will be carried out. In particular, several families of facets of this polyhe-
dron will be obtained. Facets are non-dominated valid inequalities that can
be used in a relax-and-cut environment to speed up the resolution of the
problem, since when they are added to the linear relaxation of the prob-
lem (where the integrality constraints are removed), fractional solutions of
this relaxation are cut off, and the performance of the relax-and-cut meth-
ods usually improves. However, there is another way of using the facets,
by embedding them into a relaxation method, see for instance Guignard
(1998). This is the approach used in this paper. It has several advantages,
which will be detailed below. These facets remain valid inequalities when
additional constraints are added to the formulation, and then the p-median
version of the problem can also be improved.

The paper is organized as follows. In the next section, the details of the
model are given. In Section 2, the known ILP formulations of UEHLP,
which serve as a basis for the subsequent work, are reviewed. In Sections 3
and 4, the knowledge about the polyhedron associated with the set packing
problem is applied to UEHLP. With the theoretical background of Sections
3 and 4, the solution method is specified in Section 5, and it is computa-
tionally tested in Section 6. Finally we outline future work and give some
concluding remarks.

1. Details of the Model

Consider a set N ={1, . . . , n} of locations – points, each of which receives a
product (passengers, packages . . . ) from all the other points and also sends
the product to all the other points. Let Wij � 0 be the amount of product
to be sent from the ith point to the j th point for all i, j ∈N , even when
i = j . Also consider a set of locations M = {1, . . . , q}, which can be used
as transshipment points (hubs) by paying a fixed cost denoted by Fk � 0,
k ∈M (possibly different for each of them). Once the set of hubs is deter-
mined, the flow going from point i to point j must be sent through at least
one hub.
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Note that Wii can be greater than zero when the product must be
sent to any hub to undergo any kind of process (manipulation, classifica-
tion . . . ) and then returned to point i. If it is not the case, it suffices to fix
Wii =0 for all i ∈N .

It is also assumed that: (i) associated with every two points k,m ∈ M,
a cost ckm � 0 of transporting one unit of product from k to m is given;
(ii) ckk = 0 ∀k; and (iii) associated with every two points i ∈ N , k ∈ M,
two costs bik � 0 and dki � 0 of transport one unit of product from i to
k and, respectively, from k to i, are given (see Figure 1). It is assumed
that the costs ckm satisfy the triangle inequality. Hence, the product will be
sent from i ∈N to j ∈N through one or, at most, two hubs. If the trian-
gle inequality is not satisfied, additional constraints may be added to the
model, if desired, to limit the number of hubs traversed by the product
between a given origin and destination, see Cánovas et al. (2001), although
this case is not considered here.

Finding the subset of points to be transformed into hubs and the hubs
to be used in the route associated with each pair origin–destination in such
a way that the total cost is minimized is what we call the Uncapacitated
Euclidean Hub Location Problem (UEHLP, for brevity).

1.1. basic formulation

Some formulations for different versions of uncapacitated hub location
problems in the literature (the ones giving the best computational results
until now) are based on four-indexed variables xijkm representing the frac-
tion of Wij which is routed through hubs k and m in this order (where per-
haps k=m). What is called the basic formulation here is very similar to the
formulation introduced by Campbell (1994). It reads

Figure 1. Transportation costs of the model. Points in the sets N and M are represented by cir-
cles and squares, respectively.
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(BUE) min
n∑

i=1

n∑

j=1

q∑

k=1

q∑

m=1

WijCijkmxijkm +
q∑

k=1

Fkyk (1)

s.t.
q∑

k=1

q∑

m=1

xijkm =1 ∀i, j ∈N, (2)

xijkm � yk ∀i, j ∈N ∀k,m∈M, (3)

xijkm � ym ∀i, j ∈N ∀k,m∈M, (4)

yk ∈{0,1} ∀k ∈M,

xijkm ∈{0,1} ∀i, j ∈N ∀k,m∈M,

where the coefficients Cijkm are equal to bik + ckm +dmj .
In this formulation, a binary variable yk takes the value 1 if and only

if a hub is located at point k. Constraints (2) assure that all the flows are
routed through a pair of hubs in M (perhaps a pair (k, k)) and constraints
(3) and (4) guarantee that the cost associated to a hub is paid if it is used.
We recall that it suffices to consider routes in which the passengers traverse
at most two hubs since the triangle inequality, satisfied by the costs ckm,
guarantees that there will be no more than two hubs in any route of the
optimal solution.

(BUE) is a large formulation with a very weak linear relaxation. Thus,
solving UEHLP by means of branching methods based on the lower
bounds obtained from the linear relaxation of (BUE) is a difficult task. The
same difficulties arise when using dual methods based on similar formula-
tions, see e.g. Klincewicz (1996).

In order to improve this formulation, some ideas from the field of the
polyhedral structure of set packing problems can be used. It is necessary
now to introduce some background on this problem.

1.2. reformulating uehlp as a set packing problem

A set packing problem is a binary optimization problem

(SPP): Opt {ct : At � 1r , t ∈{0,1}s},

where c∈Rs , A∈{0,1}r×s and 1r is an r-vector of ones.
In order to formulate UEHLP as a set packing problem, a reason-

ing presented in Cho et al. (1983) for the simple plant location prob-
lem is adapted. Take binary variables y ′

k = 1 − yk ∀k, take a huge number
M

∑
i

∑
j Wij , rewrite it using (2) as

∑
i

∑
j

∑
k

∑
m MWijxijkm and subtract

it from the objective function (1), obtaining
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∑

k

Fk −
∑

k

Fky
′
k −

∑

i

∑

j

∑

k

∑

m

Wij (M −Cijkm)xijkm.

Now, the objective function can be replaced by the maximization of a lin-
ear function with positive coefficients after removing the irrelevant constant∑

k Fk:

(SPUE) max
∑

k

Fky
′
k +

∑

i

∑

j

∑

k

∑

m

WijC
′
ijkmxijkm (5)

s.t.
∑

k

∑

m

xijkm � 1 ∀i, j, (6)

xijkm +y ′
k � 1 ∀i, j, k,m, (7)

xijkm +y ′
m � 1 ∀i, j, k,m, (8)

y ′
j ∈{0,1} ∀j, (9)

xijkm ∈{0,1} ∀i, j, k,m, (10)

where C ′
ijkm = M − Cijkm > 0 ∀i, j, k,m. Note that equalities (2) have been

replaced by inequalities (6). This can be done due to the following result.

PROPOSITION 11. Any optimal solution of (SPUE) satisfies all con-
straints (6) as equalities.

Proof. Consider any feasible solution not satisfying all constraints (6) as
equalities. Then, for some i1 and some j1,

∑
k

∑
m xi1j1km =0 holds. Modify

this solution, taking xi1j111 =1, y ′
1 =0 to obtain a new feasible solution. In

the worst case, if y ′
1 took the value one in the first optimal solution, the

increase of the value of the objective function is C ′
i1j111 −F1 =M −Ci1j111 −

F1. Since M is huge, this is greater than zero, and the first solution could
not be optimal.

2. Strengthening (SPUE)

The following two theorems are the basis of the forthcoming results. They
take into account the structure of any optimal solution of UEHLP in order
to eliminate part of the feasible solutions which are not candidates for the
optimum. In Figure 2, the structure of the optimal solution with respect
to the flow with origin in point 1 is shown. As demonstrated in the two
following theorems, the arcs traversed by this flow are tree-shaped. Simi-
larly, the arcs traversed by flows with destination in a given point j are
tree-shaped.
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Figure 2. The structure of the routes of the product coming from point 1, in an optimal solu-
tion of UEHLP. Points in the sets N and M are represented by circles and squares, respectively.

THEOREM 1. (SPUE) always has an optimal solution satisfying

xijkm =1⇒xij ′k′m =0 (11)

for all i, j , j ′, m, and all k �=k′ and

xijkm =1⇒xi ′jkm′ =0 (12)

for all i, i ′, j , k, and all m �=m′.

Proof. Take any optimal solution of (SPUE), and assume xijkm = 1 =
xij ′k′m for certain i, j , j ′, m and k �=k′. Then, in this optimal solution

y ′
k =y ′

k′ =y ′
m =0

holds. One of the costs associated with the routes i →k →m and i →k′ →m

must be greater than or equal to the other one, say bik + ckm � bik′ + ck′m.
Therefore, the unit coefficient associated with variable xij ′km, C ′

ij ′km, is greater
than or equal to the unit cost associated with the variable xij ′k′m, C ′

ij ′k′m. Since
y ′

k =y ′
m =0, by replacing xij ′k′m by 0 and xij ′km by 1 in the optimal solution,

another feasible solution with no lower cost (i.e., also optimal) is obtained.
Proceeding iteratively, the last optimal solution which is obtained satisfies
(11). By symmetry, (12) also holds.

Therefore, the optimal solution never includes (i) two paths from the
same origin through different first hubs to the same second hub, nor
(ii) two paths from the same first hub through different second hubs to
the same destination. Now the following constraints can be added to the
formulation:
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xijkm +xij ′k′m � 1 ∀i, j, j ′,m, k �=k′, (13)

xijkm +xi ′jkm′ � 1 ∀i, i ′, j, k,m �=m′. (14)

THEOREM 2. (SPUE) always has an optimal solution satisfying

xijkm =1⇒xij ′�k =0 (15)

for all i, j , j ′, m, and all k �=� and

xijkm =1⇒xi ′jm� =0 (16)

for all i, i ′, j , k, and all m �=�.

Proof. Take any optimal solution of (SPUE), and assume xijkm =1=xij ′�k
for certain i, j , j ′, m and k �=�. Then, in this optimal solution

y ′
k =y ′

� =y ′
m =xij ′kk =0

holds. Since in the optimal solution xij ′kk = 0 and xij ′�k = 1 hold, the cost
bi� + c�k must be less than or equal to the cost bik. Then, bi� + c�k + ckm +
dmj � bik + ckm + dmj holds. Using the triangle inequality, it follows that
bi� + c�m + dmj � bik + ckm + dmj . Therefore, the unit coefficient C ′

ij�m is
greater than or equal to the unit coefficient C ′

ijkm. Since y ′
� = y ′

m = 0, by
replacing xijkm by 0 and xij�m by 1 in the optimal solution, another fea-
sible solution with no lower cost (i.e., also optimal) is obtained. Proceed-
ing iteratively, the last optimal solution which is obtained satisfies (15). By
symmetry, (16) holds.

Hence, (i) if in the optimal solution there exists one path going directly
from a given origin to a given hub, there is no path from this origin to this
hub through a second hub; and (ii) if in the optimal solution there exists
one path going directly from a given hub to a given destination, there is no
path from this hub to this destination through a second hub. Consequently,
the following constraints can be added to the formulation:

xijkm +xij ′�k � 1 ∀i, j, j ′,m, k �=�, (17)

xijkm +xi ′jm� � 1 ∀i, i ′, j, k,m �=�. (18)

Therefore, the following strengthened formulation, termed (UEHLP), is
still a set packing problem formulation valid for UEHLP:

(UEHLP) max{(5) s.t. (13), (14), (17), (18), (6), (7), (8), (9), (10)}.
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3. The Intersection Graph

Before continuing, it is necessary to introduce some background on graphs
associated with SPP.

Let G= (V ,E) be a graph with node set V and edge set E. A nonemp-
ty subset of V of mutually non-adjacent nodes in G is called a packing.
The neighborhood N(v) of a node v is the set of nodes that are adjacent to
v. The incidence vector of a subset B of V is a binary vector (t1, . . . , t|V |)
where tj =1 if and only if the j th node of V belongs to B, j =1, . . . , |V |.
PI (G) is the set of incidence vectors of all the packings of G, and the poly-
tope associated with G, P(G), is the convex hull of PI (G).

The graph associated with (intersection graph of) (SPP) is G= (V ,E) with
|V |= s and (vi, vj )∈E if and only if the ith and j th columns of A are not
orthogonal. Then, if G is the graph associated with (SPP), the feasible set
of (SPP) is PI (G) and the optimal solutions of (SPP) can be obtained by
solving the linear optimization problem

Opt {ct : t ∈P(G)}.

Call the intersection graph of (UEHLP) G(n, q), and note P nq :=P(G(n, q)).

Figure 3 shows, in graph G(3,4), the nodes in the neighborhood of
x1223 (left hand side) and the nodes in the neighborhood of x1233 (right
hand side). In the figures of this paper, nodes associated with x-variables
(x-nodes) are represented by rectangles which are arranged in n×n blocks
of q × q rectangles. The block in the first row of blocks and second col-
umn of blocks is associated with variables x12km for all k and all m in M,
which are arranged in a matrix-like structure. The y-node associated with
variable y ′

k will be represented by the kth circle. It is assumed throughout
the paper that n, q � 3. Accordingly, the black-filled node in the left hand
side of Figure 3 is associated with x1223, while the nodes in the neighbor-
hood of x1223 appear in bold face.

Taking into account the structure of G(n, q), i.e., that changing the order
of the points of N and/or M an isomorphic graph is obtained, then any
subgraph of G(n, q) can be represented using the first boxes and the first
rows and columns inside these boxes.

4. Clique Facets

Associated with the new formulation (UEHLP), arises the convex hull of
its feasible solutions (the polytope P nq). Knowing a set of hyperplanes
which characterize this polytope enable the problem to be solved by sim-
ply maximizing the objective function on these linear inequalities (with-
out integrity constraints). In fact, only a few of these hyperplanes can be
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Figure 3. Representation of the intersection graph of (UEHLP) when n=3, q =4.

obtained but, by combining branching techniques with the partial knowl-
edge of the polytope, medium sized instances can be solved.

Non-dominated inequalities are preferred to avoid redundant useless
information about the polytope. Some concepts that clarify this aspect of
the study are now introduced.

A linear inequality ρt � ρ0 is said to be valid for P(G) if it holds for all
t ∈P(G). A valid inequality for P(G) is a facet of P(G) if and only if it
is satisfied as an equality by |V | independent vertices of P(G). A complete
graph is that in which all the nodes are pairwise adjacent. A clique in G is
a maximal complete subgraph.

The simplest facets of (UEHLP) are those inequalities having binary
coefficients and right hand side 1. The following well-known result will be
used.

THEOREM 1 (Nemhauser and Trotter (1974), Padberg (1973, 1977)). Let
G= (V ,E) be a graph and let B be a subset of V . The inequality

∑
j∈B tj �

1 is a facet-defining inequality of P(G) if and only if the subgraph induced
by B is a clique in G.

The task to be carried out is to identify the cliques in G(n, q), and then
the corresponding clique facets will directly be identified.

Since y ′-nodes are not interconnected, a clique in the intersection graph
G(n, q) contains either one or zero y ′-nodes.

THEOREM 2. The inequalities

y ′
a +

q∑

k=1

xij (a)ak +
∑

k �=a

xij (k)ka � 1 (19)



402 ALFREDO MARÍN

Figure 4. Cliques in the intersection graph containing one y-node.

with a ∈M, i ∈N , j (k) an index in N associated with each k ∈M and

y ′
a +

q∑

k=1

xi(a)jka +
∑

k �=a

xi(k)jak � 1 (20)

with a ∈ M, j ∈ N , i(k) an index in N associated with each k ∈ M, are the
unique clique facets of P nq containing one y ′-node.

Proof. Cliques containing one y ′-node cannot contain more y ′-nodes. If
one x-node belongs to the clique, other x-nodes with the same first index
(resp. second index), lying in the same column and different rows (resp. the
same row and different columns) may belong to the clique. Finally, a com-
plete row (resp. column) in one of the boxes associated with the first index
(resp. second index) must be added to obtain a maximal complete subgraph
of G(n, q), in the shape of (19) (resp. (20)).

The cliques (19) obtained in Theorem 2 are illustrated in Figure 4.
All the clique facets which are going to be obtained in the rest of the

paper are pairwise symmetric. Although we list all of them in the theo-
rems, only one of the components of each symmetric pair (the one asso-
ciated with a common first index i) is going to be demonstrated.

The formulation of UEHLP in Cánovas et al. (2001) and Hamacher
et al. (2001) includes the particular case of facets (19) in which j (k)=j ∀k,
as well as the particular case of facets (20) in which i(k)= i ∀k. The rest of
facets listed in Theorem 2, however, are derived from the new constraints
(13), (14), (17) and (18).

THEOREM 3. The inequalities

q∑

k=1

q∑

m=1

xijkm � 1 (21)
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with i, j ∈N , are the unique clique facets of P nq not containing y ′-nodes and
containing all the x-nodes in the same box.

Proof. Since all the x-nodes in the same box are interconnected, the
result is obvious.

THEOREM 4. The inequalities

q∑

m=1

xij1am +
∑

k �=a,b

xij1ka +
∑

k �=a,b

xij1kb +xij2ba � 1 (22)

with i, j1, j2 ∈N , j1 �= j2, a, b∈M, a �=b, and

q∑

k=1

xi1jka +
∑

m�=a,b

xi1jam +
∑

m�=a,b

xi1jbm +xi2jab � 1 (23)

with j, i1, i2 ∈N , i1 �= i2, a, b ∈M, a �= b, are the unique clique facets of P nq

not containing y ′-nodes and containing x-nodes in the diagonal of some box
as well as x-nodes in some other box(es).

Proof. Consider a first node xij1aa, and a second node in a different box
j2 associated with the same origin i and linked to xij1aa: xij2ba, b �=a. Since
ya does not belong to the facet, another x-node in box j1 must be included
in it, and, then, on adding the nodes connected to these three x-nodes, a
facet in the shape of (22) arises.

The cliques (23) obtained in Theorem 4 are illustrated in Figure 5.

Figure 5. Cliques in the intersection graph not containing y′-nodes, containing x-nodes in the
diagonal of some box and containing x-nodes in more than one box
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THEOREM 5. The inequalities
∑

k �=a,b

xij1ka +
∑

k �=a,b

xij1kb +xij2ab +xij3ba � 1, (24)

∑

k �=a,c

xij1ka +xij1bc +xij2ab +xij2ac +xij3ca � 1, (25)

xij1ab +xij1ac +xij2ba +xij2bc +xij3ca +xij3cb � 1 (26)

with a, b, c∈M, a �=b �= c �=a, i, j1, j2, j3 ∈N , j1 �= j2 �= j3 �= j1, and

∑

m�=a,b

xi1jam +
∑

m�=a,b

xi1jbm +xi2jba +xi3jab � 1, (27)

∑

m�=a,c

xi1jam +xi1jcb +xi2jba +xi2jca +xi3jac � 1, (28)

xi1jba +xi1jca +xi2jab +xi2jcb +xi3jac +xi3jbc � 1 (29)

with a, b, c∈M, a �=b �= c �=a, j, i1, i2, i3 ∈N , i1 �= i2 �= i3 �= i1, are the unique
clique facets of P nq not containing y ′-nodes nor x-nodes in the diagonal of
any box, and containing x-nodes in at least three different boxes.

Proof. Consider a first node xij1ca, c �=a, and a second node in a different
box associated with the same origin i. There are three possibilities:

1. The second node is in column a, i.e. it is xij2ba with b �=a, c. Then, since
all the nodes in a third box, as well as xij1ca and xij2ba, are connected
to y ′

a, a node not connected to y ′
a, lying in one of the two used boxes,

must be added to the facet. There are two non-symmetric possibilities:

(a) Take a node in the first box in column b, xij1db with d �= a, b, c.
Hence, the node to be added in the third box must be one of the
two following choices:

(i) xij3ab; then, if xij2bc or xij3ad form part of the graph, a facet in
the shape of (24) is obtained; otherwise, a facet in the shape of
(25) is obtained.

(ii) xij3ad ; then, a facet in the shape of (25) is directly obtained.

(b) Take the node in the first box xij1cb. Hence, the node to be added
in the third box must be one of the two following choices:

(i) xij3ab; then, if no more nodes from out of box j1 are added,
facet (24) is obtained; if nodes in only one of the boxes j2 and
j3 are added, facet (25) is obtained; and, finally, if nodes are
added in both boxes j2 and j3, a facet in the shape of (26) is
obtained.
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(ii) xij3ac is taken and xij3ab is not. Then, a facet in the shape of
(25) is directly obtained.

2. The second node is in column c, xij2bc with b �= a, c, and no nodes in
column a are added to the facet. There are three possibilities:

(a) The node in the third box is xij3ab, then if xij3ac is added, a facet in
the shape of (25) is obtained and, if xij3ac is not added, both (24)
and (25) are possible.

(b) The node in the third box is xij3ac is added, and xij3ab is not added.
Hence, all the remaining nodes are connected to y ′

c.
(c) The node in the third box is xij3dc with d �= a, b, c and nodes xij3ac

and xij3ac are not added. The only (except symmetries) way to avoid
the connection with y ′

c is by adding xij2ad , then the remaining nodes
form a complete subgraph and this directly leads to facet (25).

3. The second node is in row a, xij2ab, b �= a, c, and there are no nodes
in columns a and c. Hence, the only remaining node in a third box is
xij3bc, and only facets in the shape of (24) or (25) are possible.

If the second node is taken from inside a box associated with the same
destination, the symmetric facets (27–29) are obtained.

The cliques (24)–(26) obtained in Theorem 5 are illustrated in Figure 6.

THEOREM 6. The inequalities

∑

k �=a

xij1ka +xij1ba +xij1ca +xij2ab +xij2ac � 1, (30)

∑

k �=a,b

xij1ka +xij1cb +xij2ab +xij2ac +xij2ba � 1, (31)

xij1ac +xij1bd +xij2dc +xij2da +xij2cd +xij2cb � 1, (32)
∑

k �=a,b

xij1ka +
∑

k �=a,b

xij1kb +xij2ab +xij2ba � 1 (33)

with i, j1, j2 ∈N , j1 �= j2, a, b, c, d ∈M different, and

∑

m�=a

xi1jam +xi1jab +xi1jac +xi2jba +xi2jca � 1, (34)

∑

m�=a,b

xi1jam +xi1jbc +xi2jba +xi2jca +xi2jab � 1, (35)

xi1jca +xi1jdb +xi2jcd +xi2jad +xi2jdc +xi2jbc � 1, (36)
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(a)

(b)

(c)

Figure 6. Cliques in the intersection graph not containing y′-nodes nor x-nodes in the diagonal
of any box, and containing x-nodes in at least three different boxes.

∑

m�=a,b

xi1jam +
∑

m�=a,b

xi1jbm +xi2jab +xi2jba � 1 (37)

with j, i1, i2 ∈N , i1 �= i2, a, b, c, d ∈M different, are the only clique facets of
P nq not containing y ′-nodes nor x-nodes in the diagonal of any box, and
containing x-nodes in exactly two different boxes.

Proof. Consider a first node xij1ca, c �=a, and a second node in a different
box associated with the same origin i. There are four possibilities:

1. The second node is xij2ac. Then, since xij1ca and xij1ac are connected to
y ′

a and y ′
c, nodes not connected to y ′

a and y ′
c must be added to the facet.

There are three non-symmetric possibilities:

(a) Take a node in the first box in column a, xij1ba with b �=a, c. Then,
to avoid the connection with y ′

a another node in box j1 must be
added. There are three possibilities:
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(i) xij1dc; then, only xij2ad remains in the second box, and a facet
in the shape of (30) is obtained.

(ii) xij1bc or xij1cb; then, in the second box only xij2ab remains, and
a facet in the shape of (30) is again obtained.

(iii) xij1cd ; then, if xij2ad is added, a facet in the shape of (30) arises
and, in other cases, a facet in the shape of (31) arises.

(b) Take the node in the second box xij2ba. Then, the only node
remaining in the first box is xij1cb and (30) again arises.

(c) Take the node in the second box xij2ab. There are two cases:

(i) Add xij1cb; then, facet (31) is obtained.
(ii) Add xij1bc; no maximal complete subgraph can be obtained.

2. The second node is in row a, xij2ab with b �=a, c, and xij2ac is not added
to the facet. There are four ways to avoid the connection with y ′

a with-
out limiting the number of nodes in the first box to one:

(a) Add xij1bc, then xij1cb is connected to all the used and remaining
nodes and must be added to the facet, a second node in the second
box xij2dc with d �= a, b, c must be added, and the only possibility
to obtain a maximal complete subgraph is to add xij1bd , leading to
facet (32).

(b) Add xij1bd , with d �=a, b, c. Then, if xij2ad is added to the subgraph,
a facet in the shape of (31) or (32) is obtained. In any other case,
no maximal complete subgraph can be obtained.

(c) Add xij1ab, and do not add any node in the row b of the first box.
There are three possibilities:

(i) Add xij2dc, then a facet in the shape of (30) is obtained.
(ii) Add xij2bc, then a facet in the shape of (31) is obtained.

(iii) Add xij2ba, then a facet in the shape of (33) is obtained.

(d) Add xij1db for some d �= a, b, c, and do not add any node in the
row b of the first box nor xij1cb. Then, xij2ba must be added and,
to obtain a maximal complete subgraph, either xij2bc or xij2ad must
be added. In both cases, a facet in the shape of (32) is obtained.

3. The second node is in column a of j2, and no nodes in the row a of j2

are added. To avoid the connection to y ′
a there are only two non-sym-

metric cases:

(a) Add xij1cb. Then, if xij2bc is added, facets in the shape of (30) and
(31) can be obtained and if xij2dc for some d �= a, b, c is added, a
facet in the shape of (32) is obtained.

(b) Add xij1db for some d �=a, b, c, but then no maximal complete sub-
graph can be obtained.
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(c) (d)

(a) (b)

Figure 7. Cliques in the intersection graph containing neither y′-nodes nor x-nodes in the diag-
onal of any box, and containing x-nodes in exactly two different boxes.

4. The second node is in column c of box j2, and the row and column a of j2

are not used. Then, all the used and remaining nodes are connected to y ′
c.

If the second node is taken from inside a box associated with the same des-
tination, the symmetric facets (34–37) are obtained.

The cliques (30–33) obtained in Theorem 6 are illustrated in Figure 7.

5. Solution approach

UEHLP will be solved by a relax-and-cut algorithm, specifically designed
to make use of the families of facets obtained in the previous section.
The objective function (1) of (BUE) is going to be used – then, the min-
imization version of the problem is considered again, and constraints (2)
will be kept in the subproblem, while constraints (3) and (4) will not be
used anymore. To improve the lower bounds needed to fathom nodes, new
facets will be progressively incorporated to the subproblem. These facets
are chosen from among those violated by the optimal solution associated
with the Lagrangian multipliers used in the last iteration of a subgradient
procedure. It is common in the literature to use the linear relaxation and,
in that case, the separation problem is to find a facet violated by a frac-
tional solution of the continuous problem. Instead, it is the Lagrangian
relaxation which is going to be used here, and hence the separation prob-
lem is to find a facet violated by the integer optimal solution of the relaxed
subproblem, which is infeasible with respect to the primal problem. Since
this integer solution will satisfy constraints (2), it will be easy to keep track
of it by simply saving the collection (kij ,mij ) of pairs of hubs associated
with the pairs origin-destination (i, j); this is going to be a great advan-
tage when solving the separation problem.
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5.1. the subproblem in a node of the branching tree

Some modifications of the basic formulation are needed to represent a
node of the branching tree, since some hubs will have been opened and
some other hubs will have been closed. To be precise, let M1 ={k : yk = 1}
be the set of opened hubs, let M0 ={k : yk = 0} be the set of closed hubs,
and let M2 =M −M0 −M1 be the set of free hubs. Some additional inequal-
ities, obtained using Theorems 2 and 4–6, will also have been added to the
formulation.

Moreover, some x-variables are going to be fixed to zero at the beginning
of the process. Define, for each i, j, k,m, Ĉijkm = min{Cijkm, Cijmk, Cijkk,
Cijmm} and

θ ={xijkm s.t. Cijkm >Ĉijkm}.
x-variables in θ always take value 0 at any optimal solution of (UEHLP),
and they can be removed from the formulation (see Cánovas et al., 2001).
Consequently, the considered subproblem is in the form of

(P)
∑

a∈M1

Fa + (38)

min
∑

i

∑

j

∑

k

∑

m

WijCijkmxijkm +
∑

a∈M2

Faya

s.t.
∑

k

∑

m

xijkm =1 ∀i, j ∈N,

∑

i

∑

j

∑

k

∑

m

πta
ijkmxijkm � ya ∀a ∈M2 ∀t ∈T a

y , (39)

∑

i

∑

j

∑

k

∑

m

µt
ijkmxijkm � 1 ∀t ∈Tx, (40)

yk ∈{0,1} ∀k ∈M2,

xijkm =0 ∀i, j ∈N ∀k,m∈M0,

xijkm =0 ∀(i, j, k,m)∈ θ,

xijkm ∈{0,1} ∀(i, j, k,m)∈�,

where �={(i, j, k,m) : i, j ∈N, k,m∈M1 ∪M2, (i, j, k,m) �∈ θ}.
In the node considered, it is assumed that constraints (39) have been

selected from among the facets in families (19) and (20), and constraints
(40) have been selected from among the other families of facets obtained in
Section 4. Note that it is possible to fathom a node of the branching tree
by adding constraints of type (39) containing only some of the y-variables.

Constraints (39) and (40) are going to be relaxed through Lagrange mul-
tipliers ut

a � 0, a ∈ M2, t ∈ T a
y and vt � 0, t ∈ Tx . The Lagrangian relaxed
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problem (PRuv) is then obtained, with objective function

∑

a∈M1

Fa +
∑

i

∑

j

∑

k

∑

m

WijCijkmxijkm +
∑

a∈M2

Faya

+
∑

a∈M2

∑

t∈T a
y

ut
a

(∑

i

∑

j

∑

k

∑

m

πta
ijkmxijkm −ya

)

+
∑

t∈Tx

vt

(∑

i

∑

j

∑

k

∑

m

µt
ijkmxijkm −1

)
=

∑

a∈M1

Fa −
∑

t∈Tx

vt

+
∑

i

∑

j

∑

k

∑

m

(
WijCijkm +

∑

a∈M2

∑

t∈T a
y

ut
aπ

ta
ijkm +

∑

t∈Tx

vtµt
ijkm

)
xijkm

+
∑

a∈M2

(
Fa −

∑

t∈T a
y

ut
aπ

ta
ijkm

)
ya.

(PRuv) decomposes in a natural way in the constant
∑

a∈M1
Fa − ∑

t∈Tx
vt

plus two subproblems in x and y in the form of

(PRuvx) min
∑

i

∑

j

∑

k

∑

m

Gijkmxijkm

s.t.
∑

k

∑

m

xijkm =1 ∀i, j ∈N,

xijkm =0 ∀i, j ∈N ∀k,m∈M0,

xijkm =0 ∀(i, j, k,m)∈ θ,

xijkm ∈{0,1} ∀(i, j, k,m)∈�,

where Gijkm = WijCijkm + ∑
a∈M2

∑
t∈T a

y
ut

aπ
ta
ijkm + ∑

t∈Tx
vtµt

ijkm, i, j ∈ N ,
k,m∈M, and

(PRuvy) min
∑

a∈M2

(
Fa −

∑

t∈T a
y

ut
aπ

ta
ijkm

)
ya

s.t. yk ∈{0,1} ∀k ∈M2.

(PRuvx) is solved by inspection, for a given set of multipliers (ut
a, v

t ),
taking ∀i, j ∈N

xijkm =
⎧
⎨

⎩

1, for one (i, j, k,m) s.t. Gijkm =min{Gijlp : l, p �∈M0, (i, j, l, p) �∈ θ}

0, otherwise

(41)
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(PRuvy) is also solved by inspection, for a given set of multipliers ut
a,

taking

yk =1 iff Fa −
∑

t∈T a
y

ut
aπ

ta
ijkm � 0 ∀k ∈M2. (42)

Therefore, the optimal value of (PRuv) is

v(PRuv)=
∑

a∈M1

Fa −
∑

t∈Tx

vt

+
∑

i

∑

j

min
k,m�∈M0, (i,j,k,m) �∈θ

{
WijCijkm +

∑

a∈M2

∑

t∈T a
y

ut
aπ

ta
ijkm +

∑

t∈Tx

vtµt
ijkm

}

+
∑

a∈M2

(
Fa −

∑

a∈M2

∑

t∈T a
y

ut
a

)−
,

where z− :=min{z,0}.
This value is a lower bound on the optimal value of (P), and can be used

to fathom nodes of the branching tree, instead of using the lower bound
given by the linear relaxation of the problem. In Figure 8, a flowchart of
the solution process is shown. The details of each step of the process are
specified below.

1. Initial upper bound. A simple greedy heuristic is used to obtain an ini-
tial upper bound. When the instance is small or difficult the heuristic
solution is improved by a one-to-one interchange algorithm.

2. Choose unresolved node. The node with lowest lower bound among the
nodes in the deepest level of the branching tree is chosen.

3. Update upper bound. When a terminal node is found, the associated
solution is checked and, if necessary, the upper bound is updated.

4. Iterate (a). Lagrangian multipliers are updated by means of a subgra-
dient procedure. In stage (a), only multipliers ut

a are modified. In the
root node of the branching tree, the maximum number of iterations
is g · 12 · n, where g is 1, 2 or 3 depending on the difficulty of the
instance. In the rest of the nodes, the number of iterations is 10 ·g.

5. Separate (a). In stage (a), only facets (19) and (20) are separated.
The reason is that these inequalities are necessary to obtain feasible
solutions for the original problem. The integer optimal solution of the
subproblem associated with the last iteration of the subgradient proce-
dure, which is usually infeasible with respect to the primal problem, is
considered. If, in this solution, yk = 0 and either xijkm = 1 or xijmk = 1
for some i, j and m, then the facet in the family (19) or (20) contain-
ing all the x-nodes in the same box is added to the formulation. Facets
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1.   INITIAL

UPPER BOUND

2.   CHOOSE

UNRESOLVED NODE

3.

UPDATE

UPPER 
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7. ITERATE (b)

8. SEPARATE (b)
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END
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Figure 8. Flowchart of the solution process.

are incorporated to the formulation only in the first four levels of the
branching tree, and are never removed.

6. Is (a) ended? If the maximum number of facets in families (19) and
(20) – equal to 10000 ·g – has been reached, or no more than 50 fac-
ets have been separated in the last time the algorithm passed through
step 5, end with (a).

7. Iterate (b). In stage (b), all the multipliers are updated in each iteration.
8. Separate (b). In (b), the facets which contain only x-variables are con-

sidered. In a preliminary study it was checked that some of the families
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were more promising than others. Consequently, non-promising fami-
lies (24 – 29), (32) and (36) are not separated by the algorithm. The
separation algorithm looks for violated basic inequalities in the shape
of (13), (14), (17) and (18) and randomly chooses one of the facets in
families (22), (30), (31), (23), (34), (35), (33), (37) containing the vari-
ables of the basic violated inequality.

9. Is (b) ended? If 500 · g facets have been separated in stage (b) or no
more than 200 facets have been separated in the last time the algo-
rithm passed through step 8, end with (b).

10. Closing and opening tests. Every non-fixed hub is considered. If the
lower bound obtained by fixing the corresponding y-variable to one
(resp. zero) is greater than the best upper bound, the hub is closed
(resp. opened) in the node.

11. Branch. When the node cannot be fathomed, the variable ya ∈M2 with
minimum value of Fa −∑

t∈T a
y
ut

aπ
ta
ijkm is fixed to zero and one in two

new nodes.

6. Computational Study

6.1. uncapacitatd euclidean hub location problem

A computational study was carried out in order to test the solution
method. A set of instances commonly used in the literature, called AP
(Australian Post), was downloaded from the web page mscmga.ms.ic.ac.uk/
jeb/orlib/phubinfo.html. These instances consist of the Euclidean distances
between 200 cities in Australia, a code to reduce the size of the set by
grouping cities, and the values of Wij (postal flow between cities). For
instances of size 10 to 50 there are also two kinds of fixed costs Fk avail-
able. We used the more difficult sets of costs (files FcostT.n). In these
instances, N = M. The algorithm was coded in Free Pascal under Linux,
and the processor was a Mobile Pentium 4 1.7 GHz with 256 MB of RAM
memory and 256 MB of swap memory.

In the tables of computational results, L ∈ {E,M,H } indicates if the
instance is considered Easy, Medium or Hard (this affects the value of
g); Hubs is the number of hubs opened in the optimal solution; % is the
percentage of difference between the initial upper bound and the optimal
value; NT and T are the non-terminal and terminal nodes of the branching
tree, respectively; Cl and Op are the number of hubs closed and opened by
the tests across the branching tree; Y is the number of facets of families
(19) and (20) present in the formulation at the end of the solution process;
A, B, C and D indicate how many facets in families (22) and (23), (30) and
(34), (31) and (35), (33) and (37), respectively, have been separated. CPU
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is the number of CPU seconds of the solution process, including data read-
ing, preprocessing, heuristic solution, optimal solution and output.

The transportation costs bij , cij and dij were obtained by multiplying the
distances between cities Dij by different constants. A first set of symmet-
ric instances was built with bij = dij = 10 · Dij and cij = 10 · α · Dij , where
α is considered to be a discount factor between 0 and 1. And asymmet-
ric instances were built with bij = 3 · Dij , cij = 0.75 · Dij and dij = 2 · Dij .
When the instance was symmetric, the number of x-variables was previ-
ously reduced, see Cánovas et al. (2001).

The results of the computational study for symmetric instances are
shown in Table I. Instances with up to 50 points in the set N =
M were optimally solved. The values of α were taken from the set
{0.1,0.3,0.5,0.7,0.9}. Instances with great values of α are easier to solve
because the number of x-variables is much reduced during the preprocess-
ing phase. The fixed costs contained in files FcostT.n led to a number of
opened hubs between 3 and 9. Even though the (extremely simple) heu-
ristic solution does not usually reach the optimal solution, the number of
nodes of the branching tree was small. The reason is that the facets added
to the formulation significantly improved the quality of the lower bounds,
allowing the algorithm to discard many nodes either by means of the open-
ing and closing tests, or after a few iterations of the subgradient procedure.
The hardest instance, with 50 points and α =0.1, was solved in 61 seconds
of CPU time. In Mayer and Wagner (2002), they reported many hours of
CPU time for instances of 40 nodes of AP data (with unknown but equal
fixed costs) in a Pentium 200 MHz. They also used another data set of the
literature, the so-called CAB data. The CPU time for solving, for example,
instances with 25 nodes and α = 0.6, was around 1000 seconds; we solved,
for comparison, these instances in a Pentium 133 MHz in around 6 seconds.

The results of the computational study for asymmetric instances are
shown in Table II. These instances are harder than the symmetric ones.
Again, the number of nodes of the branching tree was small. The hardest
instance, with 50 points, was solved in 206 seconds of CPU time (although
after a slight modification in the parameters of the algorithm it could
be solved in 153 seconds). In Cánovas et al. (2001), Xpress was used to
solve instances with up to 25 points. The advantage of using standard
commercial software is obvious: it is ready to be used without additional
work, and a good formulation is all that is required to solve medium sized
instances. But specifically-oriented software like the algorithm developed
here allows a speeding up of the process and greater instances can be
solved. In fact, Cánovas et al. were able to solve instances with up to 25
points in 16 seconds in a similar machine, but greater instances exceeded
the memory limitations of the software. These until now were the best
results for UEHLP in the literature, but they are clearly outperformed by
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Table I. Results for AP data, symmetric instances

Problem Solution Nodes Tests Facets CPU

n L α Hubs % NT T Cl Op Y A B C D

0.1 9 0 1 2 0 9 100 0 0 0 0 0.01
0.3 9 0 1 1 1 9 111 0 0 1 0 0.01

10 E 0.5 8 0 5 1 1 7 109 1 0 1 2 0.02
0.7 6 0 7 2 3 9 118 15 5 6 3 0.02
0.9 5 2.50 17 6 17 6 125 5 0 1 2 0.02

0.1 8 0.55 21 11 26 12 1029 11 26 32 145 0.93
0.3 7 0.79 23 6 34 16 1048 53 35 40 207 0.77

20 E 0.5 4 0.13 21 7 32 8 1075 84 25 23 129 0.46
0.7 4 0.43 15 1 18 2 1044 60 2 2 36 0.21
0.9 4 0 5 2 14 3 924 16 0 0 0 0.10

0.1 6 0.04 13 3 24 10 3602 67 63 63 408 4.45
0.3 4 0.09 9 6 31 7 3737 90 49 40 322 3.24

30 E 0.5 4 1.87 23 10 49 6 3405 108 31 15 377 3.26
0.7 4 1.09 9 2 27 1 3309 247 8 11 106 1.43
0.9 4 0.63 7 2 33 3 3294 116 0 2 18 1.10

0.1 5 0 33 5 74 22 10155 77 30 40 756 27.25
0.3 4 0 11 7 43 4 10117 100 21 21 426 13.04

40 E 0.5 3 0 13 4 46 7 9897 191 13 23 357 10.83
0.7 3 0 3 4 40 3 9374 365 9 8 193 6.32
0.9 3 0 7 2 36 2 8404 309 0 0 28 4.15

0.1 4 4.53 7 2 45 1 20311 204 70 63 1110 61.37
0.3 4 2.57 5 2 45 2 20155 266 31 25 814 45.95

50 M 0.5 4 1.42 7 1 46 1 20020 544 19 15 646 38.61
0.7 4 0.01 7 2 47 3 19972 818 9 8 185 37.66
0.9 3 0 9 3 55 8 18454 367 2 5 12 20.84

Table II. Results for AP data, asymmetric instances

Problem Solution Nodes Tests Facets CPU

n L Hubs % NT T Cl Op Y A B C D

10 E 3 0 3 1 6 3 438 13 2 2 6 0.02
20 E 2 0 3 2 17 1 3704 107 0 1 42 1.06
30 E 2 0 3 1 27 2 10532 479 19 15 277 4.85
40 M 1 0 37 12 74 38 20414 432 11 15 802 81.84
50 H 2 1.49 63 28 506 2 31735 547 112 97 1155 205.61

our new algorithm. Very recently, in Boland et al. (2003), they reported
more than 13 hours of CPU time for the instance of Table II with 50 nodes,
solving it in a Digital Personal workstation with a 500 MHz alpha chip.

Since the number of opened hubs is very small, we also considered the
same instances but dividing the fixed costs Fk by 10. The results are shown
in Table III.
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Table III. Results for modified AP data, asymmetric instances

Problem Solution Nodes Tests Facets CPU

n L Hubs % NT T Cl Op Y A B C D

10 E 10 0 1 1 0 10 171 0 0 0 0 0.01
20 E 14 0 5 4 3 15 1139 1 7 5 10 0.59
30 E 10 0.42 9 1 20 6 4037 81 125 121 315 4.42

40 M 8 1.29 37 12 74 38 12760 96 68 78 813 55.14
50 M 7 3.19 21 6 201 25 21977 264 73 80 1009 126.51

6.2. p-hub median problem

With the aim of widening the comparison, the same instances but with the
additional constraint of forcing the number of opened hubs, and fixed costs
Fk = 0 ∀k, were considered. This p-median version of the problem is usu-
ally known as p-hub median problem. Note that the polyhedron associated
with this problem is not the same, and hence the valid inequalities used
to enforce the formulation are not facets. In any case, although further
analysis can give better constraints for the p-hub median problem, our
inequalities remain valid and the computational test can be carried out
after making the corresponding modifications in the calculus of the lower
bound and the management of the branching tree.

Tables IV and V show the results for symmetric instances of the p-hub
median problem. The same instances with up to 50 points and values of
p between 3 and 8 and α ∈{0.1,0.3,0.5,0.7,0.9} were solved. The opening
and closing tests did not work well for these instances and were suppressed.
The number of nodes of the branching tree was higher here, and it was
necessary to classify the instances with 40 points as medium difficult, i.e.,
to use more iterations in the subgradient method and a greater maximum
number of facets. But, all in all, the instances were optimally solved and
the algorithm did not require a high computational effort.

In Table VI, the results for asymmetric instances of the p-hub median
problem are shown. It is evident that, for instances with small values of p

and consequently with few feasible solutions, the procedure works relatively
worse than for instances with greater values of p. The reason is that, for
small values of p, the valid inequalities developed for UEHLP need to be
strengthened by considering the p-median constraint. This is a matter for
future research, and there exists a previous work on the polytopes of sev-
eral p-median versions of several location problems that could be adapted
to work with our strengthened formulation of the p-median hub location
problem, see e.g. Avella and Sassano (2001).

On the other hand, for high values of p, we have not found any pro-
cedure in the literature that solve the problem more efficiently. The results
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Table IV. Results for AP data, symmetric instances, fixed number of hubs (1st part)

Problem Solution Nodes Facets CPU
n α L p % NT T Y A B C D

3 0.21 15 4 157 9 2 4 16 0.02
4 0.54 23 6 151 9 6 11 18 0.05

10 0.1 E 5 2.31 19 2 98 12 1 1 7 0.03
6 0 62 7 40 0 3 6 1 0.02
7 0 67 14 30 0 0 0 0 0.02
8 0 36 25 20 0 0 0 0 0.02

3 0 21 4 148 6 0 0 8 0.02
4 1.11 33 8 105 23 3 3 11 0.04

10 0.3 E 5 1.27 18 5 90 10 1 0 3 0.02
6 0 59 6 40 1 7 10 0 0.01
7 0 66 13 30 0 0 0 0 0.00
8 0 36 23 20 0 0 0 0 0.00

3 0 34 9 114 21 2 4 5 0.02
4 0 22 3 108 17 0 0 7 0.03

10 0.5 E 5 0 13 2 90 5 3 6 3 0.02
6 0 59 6 40 1 2 3 0 0.01
7 0 66 15 30 0 0 0 0 0.01
8 0 36 23 20 0 0 0 0 0.01

3 0 30 5 112 13 2 4 1 0.02
4 0.39 14 7 120 10 0 2 0 0.00

10 0.7 E 5 0.44 11 2 113 3 0 0 2 0.01
6 0 56 1 40 2 0 1 0 0.02
7 0 66 13 171 30 0 0 0 0.02
8 0 36 23 20 0 0 0 0 0.01
3 0 26 1 114 13 0 1 0 0.02
4 0.22 19 4 121 4 0 0 1 0.02

10 0.9 E 5 0.43 11 2 95 3 0 0 0 0.00
6 0 56 1 40 1 0 2 0 0.01
7 0 57 16 30 0 0 0 0 0.01
8 0 30 19 20 0 0 0 0 0.00

3 0 34 1 1352 34 27 12 125 1.12
4 0 34 1 1171 79 17 13 140 1.02

20 0.1 E 5 0 51 2 894 37 24 17 144 1.14
6 0 32 1 786 15 23 24 86 0.71
7 0 27 2 765 4 21 22 47 0.66
8 0.75 50 3 730 4 8 6 43 0.86

3 0 38 1 1146 58 14 18 165 0.73
4 0 42 1 1053 46 23 18 119 0.75

20 0.3 E 5 0 55 6 986 33 7 12 65 0.75
6 0.31 40 3 788 39 23 15 66 0.56
7 0 48 3 701 17 11 6 52 0.57
8 0 72 5 666 13 14 8 55 0.76

3 0 41 10 1109 30 5 4 98 0.57
4 0 72 1 1007 56 9 7 87 0.65

20 0.5 E 5 0.06 129 4 913 30 9 3 81 0.87
6 0 50 3 751 14 14 13 59 0.41
7 0 32 1 694 21 10 13 68 0.33
8 0 72 5 591 24 10 12 38 0.49

3 0 55 16 965 56 4 3 41 0.38
4 0 69 2 891 70 8 8 50 0.47
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Table IV. (Continued)

Problem Solution Nodes Facets CPU

n α L p % NT T Y A B C D

20 0.7 E 5 0.27 184 11 765 62 11 12 72 0.82
6 0.88 140 7 691 89 12 13 67 0.77
7 0.60 150 9 696 53 17 15 58 0.73
8 0.35 150 5 628 56 16 11 46 0.70

3 0 87 22 806 29 0 3 5 0.27
4 0 217 14 674 53 3 2 7 0.63

20 0.9 E 5 0.24 580 13 628 55 12 13 11 1.56
6 0.97 776 19 594 106 20 15 25 2.26
7 0.24 258 9 561 99 12 10 18 0.79
8 0.26 268 15 570 108 17 20 35 1.06

3 7.61 355 66 4699 118 43 50 521 49.99
4 7.25 828 47 3915 88 92 98 336 76.74

30 0.1 E 5 8.12 558 17 3428 50 27 27 547 56.39
6 5.36 565 8 2814 57 72 63 335 45.31
7 2.38 288 5 2459 76 102 93 330 23.91
8 2.01 221 6 2363 52 63 57 394 18.73

3 5.55 483 54 3737 104 26 23 385 37.76
4 5.74 573 20 3609 143 41 56 448 42.38

30 0.3 E 5 5.36 804 21 2843 111 62 61 365 48.22
6 2.92 385 6 2538 107 43 28 344 23.24
7 1.10 129 4 2328 66 93 90 319 8.32
8 1.18 142 7 2319 51 80 74 284 9.30

3 3.32 176 31 3782 233 9 8 302 11.50
4 4.17 480 17 3224 170 29 25 366 24.89

30 0.5 E 5 3.60 851 14 2740 138 58 51 263 35.60
6 1.41 199 6 2538 116 41 36 238 9.67
7 0.69 163 8 2375 46 44 31 147 7.16
8 0.79 214 11 1945 22 36 33 132 8.02

3 1.66 172 35 3540 214 11 4 140 7.02
4 2.76 605 24 2968 243 31 37 325 21.48

30 0.7 E 5 2.73 877 12 2592 253 48 43 235 28.86
6 0.73 400 7 2314 153 47 31 212 12.18
7 0.72 518 13 1999 184 74 58 228 14.24
8 0.79 341 14 2053 169 70 64 236 11.45

3 1.43 153 26 3156 77 0 0 11 4.12
4 2.25 563 68 2799 170 0 0 56 12.69

30 0.9 E 5 2.25 2272 105 2163 330 20 17 79 43.70
6 0.60 427 08 2097 271 34 23 112 9.53
7 0.53 1112 23 1923 299 32 26 127 22.80
8 0.62 1241 4 1868 270 57 43 132 25.09

in Ernst and Krishnamoorthy (1998) are very good when the number of
hubs opened is small, but the time needed to solve the instances grows
exponentially with p. The reported times for the AP instances with n=50
and p =3,4,5 are 49, 694 and 7545 seconds (in a 200 MHz machine), and
for p=10 the time increased to 57243 seconds (about 16 hours). We solved
this instance, for comparison, in a Pentium 133 with 78 MB of memory in
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Table V. Results for AP data, symmetric instances, fixed number of hubs (2nd part)

Problem Solution Nodes Facets CPU
n α L p % NT T Y A B C D

3 0 74 1 11177 235 145 132 547 81.68
4 0.14 132 3 9462 96 56 57 830 100.34

40 0.1 M 5 0 82 1 8368 70 56 48 938 80.69
6 0 75 2 7355 99 120 124 789 68.56
7 0 104 1 6914 79 135 144 795 82.92
8 0 79 2 6126 56 121 210 686 67.43

3 0 74 1 10234 373 58 57 780 61.97
4 0 73 2 8228 96 14 12 888 49.05

40 0.3 M 5 0 84 1 7355 156 46 42 838 51.45
6 0 70 1 6835 141 89 97 901 47.80
7 0.07 98 5 6341 129 57 60 778 55.26
8 0.43 148 3 5318 124 82 80 746 67.43

3 0 75 2 9185 678 20 20 583 42.50
4 0 73 2 7723 160 29 14 820 37.71

40 0.5 M 5 0 70 1 6858 240 64 87 638 33.30
6 0 68 1 6091 225 60 42 706 31.88
7 0.19 73 2 5427 221 49 59 824 34.27
8 0.39 109 4 5517 100 60 59 546 41.75

3 0 110 1 8236 729 3 1 406 33.02
4 0 82 1 6773 379 27 22 616 24.43

40 0.7 M 5 0.38 119 2 6444 232 42 43 498 32.62
6 0.31 169 4 5643 383 52 50 584 38.93
7 0 110 1 4900 154 17 17 344 25.78
8 0.29 190 3 4661 204 44 31 469 37.64

3 0 106 1 7316 180 2 2 19 17.44
4 0 102 1 5814 200 1 0 51 14.89

40 0.9 M 5 0.24 158 3 5548 160 6 6 80 17.62
6 0 150 1 4789 250 21 10 110 20.66
7 0 266 1 4406 257 15 7 129 33.11
8 0.20 480 9 4132 194 17 12 141 45.76

3 0 103 2 20039 160 90 77 1011 186.38
4 0.37 135 6 19821 124 105 100 1397 313.67

50 0.1 M 5 0 113 2 15269 65 77 83 1109 211.22
6 0 114 1 13730 88 142 146 857 185.45
7 0 138 7 13001 87 155 165 643 199.10
8 0 149 2 12269 49 170 164 721 226.08

3 0 97 6 20085 231 68 69 898 159.35
4 0 114 3 17207 73 116 101 833 159.00

50 0.3 M 5 0.01 134 3 14415 136 51 51 932 152.33
6 0 96 1 13302 119 33 37 978 127.60
7 0 97 2 11943 124 76 82 805 138.77
8 0 86 1 11054 82 127 114 773 130.86

3 0 99 2 18846 503 3 4 505 129.66
4 0 98 1 15535 170 34 39 522 783.11

50 0.5 M 5 0 136 1 12865 206 41 36 928 107.66
6 0 146 1 12196 161 30 23 883 110.99
7 0.18 415 4 10853 167 63 45 732 232.74
8 0.24 413 4 10028 206 43 41 730 230.42

3 0 108 1 16624 727 5 2 290 85.44
4 0 116 1 13459 438 87 96 644 73.92
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Table V. (Continued)

Problem Solution Nodes Facets CPU

n α L p % NT T Y A B C D

50 0.7 M 5 0 170 1 12121 256 25 20 722 86.41
6 0.21 273 4 11080 257 45 49 653 121.47
7 0 503 4 9949 308 34 30 701 194.07
8 0.03 433 4 9210 367 55 51 788 177.59

3 0.96 331 78 14036 293 0 0 58 88.83
4 0 214 7 11213 418 22 31 117 35.79

50 0.9 M 5 0 246 3 10452 293 6 6 181 61.18
6 0 308 1 9602 361 20 17 253 79.30
7 0 927 2 8745 409 27 9 277 196.93
8 0.16 807 2 8176 409 40 26 274 187.98

Table VI. Results for AP data, asymmetric instances, fixed number of hubs

Problem Solution Nodes Facets CPU

n L p % NT T Y A B C D

3 0 15 4 264 38 5 3 23 0.03
4 0 16 1 234 15 7 4 20 0.04

10 E 5 0 10 1 215 15 0 3 5 0.03
6 0 14 7 198 0 5 6 5 0.01
7 0 6 1 189 5 0 0 1 0.01
8 0 36 23 38 0 0 0 0 0.02

3 0 54 7 2277 176 25 20 340 2.45
4 0 45 2 2029 159 50 40 330 2.13

20 E 5 0 46 3 1895 88 19 18 225 1.96
6 0.38 41 2 1716 56 31 31 162 1.76
7 0.01 46 3 1306 23 21 25 92 1.41
8 0.03 46 3 1265 14 21 13 124 1.50

3 0 54 1 7950 536 72 70 521 28.30
4 0 52 1 7162 241 214 208 621 28.32

30 M 5 0 53 2 4938 228 41 39 694 20.53
6 0 52 7 5003 77 84 72 329 17.36
7 0 46 1 4760 125 94 94 504 17.56
8 0 56 3 3784 62 50 43 251 15.24

3 0 74 1 20030 445 54 38 886 114.76
4 0 74 1 17003 142 73 73 1248 116.84

40 M 5 0 96 1 15236 86 19 27 877 118.89
6 0 71 2 13280 229 51 39 732 91.42
7 0.07 97 8 12114 161 129 119 698 97.33
8 0 75 2 11795 119 79 68 804 97.79
3 0 304 1 30924 590 104 104 2177 1004.76
4 0 148 1 30068 227 104 88 1417 567.96

50 H 5 0 99 4 27676 239 94 86 1093 386.24
6 0 89 2 25889 175 93 71 1181 352.35
7 0.04 105 2 23776 220 108 114 1243 349.02
8 0 84 1 21831 250 147 129 1624 311.55
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2775 seconds (about 46 minutes). Boland et al. (2003) needed between 2.5
and 19 hours of CPU time for the instances with 50 points and p between
2 and 5.

7. Conclusions

Formulating a real model as an integer programming problem is a task that
can be performed in many ways. It is mandatory to look for a set of ade-
quate variables and to strengthen the constraints as much as possible, in
order to obtain reduced and useful formulations. The evolution in the lit-
erature on uncapacitated hub location problems can be shown as a clear
example of how the improvement of the formulations has led to an impres-
sive reduction in the computational times and the sizes of the approachable
instances. Another step in this direction has been given in this paper, by
discarding a part of the set of feasible solutions since the optimal solution
was proved to be outside the set.

By integrating the analysis of the polyhedron associated with this strength-
ened formulation and the well-known Lagrangian relaxation technique, a
very efficient relax-and-cut algorithm for the Uncapacitated Euclidean Mul-
tiple Allocation Hub Location Problem has been implemented. This problem
arises in transportation systems when several locations send and receive pas-
sengers and/or express packages and the performance of these systems can
be improved by using hubs, where the passengers/packages are collected and
distributed. Greater instances, where the transportation costs between hubs
satisfy the triangle inequality, have been optimally solved in minutes, even
for the p-median version of the problem.

As a matter of future research, good heuristic algorithms are required
to approximate the optimal solution of instances with hundreds of nodes.
Capacitated and more general versions of the problem are also being stud-
ied, but there is still a lot of work to be done in this line. The main ideas
developed in this paper could be used to approach other versions of the
problem and other related location/transportation problems.
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